

Running the Gamut of IoT: From Spacecraft Telemetry to Facilities Maintenance

Kyle Hundman, Data Scientist

Office of the Chief Information Officer (OCIO)

NASA

Jet Propulsion Laboratory, California Institute of Technology

IoT, broadly

Value Approach

Dirk Didascalou, VP AWS IoT:

If you knew the state of every thing in the world, and could reason on top of the data:

What problems would you solve?

Levels of Cost and Maturity

JPL IoT: A Wide Spectrum

Spacecraft: Megasystems of Sensors SMAP

- Measure global soil moisture
- 3,857 Telemetry Channels
 - Power, CPU, Telecom, Radiation, Temperature, etc.
- 1 TB/day
- Near real-time processing
- Custom (limited prior knowledge)
- Complex relationships

Telemetry Anomaly Detection

An Easy Sell

SCIENCE NEWS | Thu Sep 3, 2015 | 4:51pm EDT

Key radar fails on \$1 billion NASA environmental satellite

A 127-foot (39 meter) rocket built and flown by United Launch Alliance blasts off at 6:22 a.m. PST (14:22 GMT California in this January 31, 2015 file photo. REUTERS/Gene Blevins/Files

- SMAP cost: \$915M
- Curiosity cost: \$2.5B
- Harsh environment
- Repairs are difficult
- Public perception

Credit: Dan Isla, Connor Francis

Towards Reasoning

Flexibility, Ease of Access, Foolproofing

Speed and Scale

Speed

- SMAP real-time
- MSL (Curiosity) 3x/day

Scale

- ~ 3.5B values
- ~ 1M values per channel
- Does every value matter?
 - Redundancy?
 - Importance?
 - Aggregations?

Artist rendering of commercial Mars satellites providing communications back to Earth, Image Credit: NASA/JPL

Expert Systems?

- Leverage subject matter experts
 - Parameters, limits, feature creation
- Challenges
 - Accuracy
 - Completeness
 - Time
 - Custom
- Validation, not development

Complexity

Complexity

Performance and Interpretability

Deep Learning - LSTMs

Model comparisons based on data size

Dataset Size

Model							
Comp	lexity						

Model	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
BoW	11.19	7.15	3.39	7.76	42.01	31.11	45.36	9.60
BoW TFIDF	10.36	6.55	2.63	6.34	40.14	28.96	44.74	9.00
ngrams	7.96	2.92	1.37	4.36	43.74	31.53	45.73	7.98
ngrams TFIDF	7.64	2.81	1.31	4.56	45.20	31.49	47.56	8.46
Bag-of-means	16.91	10.79	9.55	12.67	47.46	39.45	55.87	18.39
LSTM	13.94	4.82	1.45	5.26	41.83	29.16	40.57	6.10
Lg. w2v Conv.	9.92	4.39	1.42	4.60	40.16	31.97	44.40	5.88
Sm. w2v Conv.	11.35	4.54	1.71	5.56	42.13	31.50	42.59	6.00
Lg. w2v Conv. Th.	9.91	-	1.37	4.63	39.58	31.23	43.75	5.80
Sm. w2v Conv. Th.	10.88	-	1.53	5.36	41.09	29.86	42.50	5.63
Lg. Lk. Conv.	8.55	4.95	1.72	4.89	40.52	29.06	45.95	5.84
Sm. Lk. Conv.	10.87	4.93	1.85	5.54	41.41	30.02	43.66	5.85
Lg. Lk. Conv. Th.	8.93	-	1.58	5.03	40.52	28.84	42.39	5.52
Sm. Lk. Conv. Th.	9.12	-	1.77	5.37	41.17	28.92	43.19	5.51
Lg. Full Conv.	9.85	8.80	1.66	5.25	38.40	29.90	40.89	5.78
Sm. Full Conv.	11.59	8.95	1.89	5.67	38.82	30.01	40.88	5.78
Lg. Full Conv. Th.	9.51	-	1.55	4.88	38.04	29.58	40.54	5.51
Sm. Full Conv. Th.	10.89	-	1.69	5.42	37.95	29.90	40.53	5.66
Lg. Conv.	12.82	4.88	1.73	5.89	39.62	29.55	41.31	5.51
Sm. Conv.	15.65	8.65	1.98	6.53	40.84	29.84	40.53	5.50
Lg. Conv. Th.	13.39	-	1.60	5.82	39.30	28.80	40.45	4.93
Sm. Conv. Th.	14.80	-	1.85	6.49	40.16	29.84	40.43	5.67

(Zhang, Zhao, LeCun 2015)

Performance and Interpretability

Kernel PCA

(Fujimaki, Yairi, and Machida, 2005)

Complexity

Performance and Interpretability

K-Means Clustering

- Assumptions of normality?
- Limited interpretability
- Less expensive
- Decisions
 - Number of clusters
 - Distance threshold

Achieving Balance – Scientific Rigor versus Value

- Be patient and thorough
- Communication
- Good enough
- Give and take add value along the way

JPL IoT:

Leveraging the Consumer Space

Creative Possibilities

Amazon Echo

Arduino

() GitHub

Raspberry Pi

Phillips Hue

Makoto Koike, IoT Hero

Cucumber Sorting

"Makoto started helping out at his parents' cucumber farm, and was amazed by the amount of work it takes to sort cucumbers by size, shape, color, and other attributes."

Cucumber Sorter

Rov-E

Robotic Ambassador

https://youtu.be/QcqSHLw4hTE?t=46m40s

Space Problems

Maximizing Utilization

Motion Sensor - \$4

WiFi Adapter - \$9

DynamoDB 25GB, 2.5M reads free

DynamoDB

FacSearch

Visualization and Integration Platform for Facilities and IoT Data

Then filter further using additional parameters: Select Space Types: **Occupying Organization** Fire Extinguisher Type all types open office all types an occupying organization (e.g. 1700) closed office Co2 tech dc **Allocated Organization** ✓ mechanical halon ✓ storage an allocated organization (e.g. 3200) v public conf. **Spaces with Multiple Occupants** v private conf. only spaces with multiple occupants Person ✓ operational ✓ misc. a name or badge number (e.g. John, 173629) **Unoccupied spaces** ✓ lab only unoccupied spaces circulation **Building** custodial ✓ training The building number (e.g. 301, 180) ✓ warehouse ✓ shop **Minimum Square Footage** construction ✓ unlabeled

https://github.com/khundman/FacSearch

square footage (e.g. 65, 220)

FacSearch

Data Visualization and Integration Platform for Facilities

FacSearch

Data Visualization and Integration Platform for Facilities

Extend Situational Awareness

- Firewall attacks
- Acronyms
- Remedy tickets
- Safety
- Rov-E
- Mars Alexa

Newsletter signup

Space & Science

NASA unveils a skill for Amazon's Alexa that lets you ask questions about Mars

BY KEVIN LISOTA on November 29, 2016 at 10:35 pm

Buy tickets to the GeekWire Bash here!

Device Network

Addressing Security Concerns

